Homeomorphisms of function spaces and hereditary cardinal invariants

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

compactifications and function spaces on weighted semigruops

chapter one is devoted to a moderate discussion on preliminaries, according to our requirements. chapter two which is based on our work in (24) is devoted introducting weighted semigroups (s, w), and studying some famous function spaces on them, especially the relations between go (s, w) and other function speces are invesigated. in fact this chapter is a complement to (32). one of the main fea...

15 صفحه اول

Cardinal invariants and compactifications

We prove that every compact space X is a Čech-Stone compactification of a normal subspace of cardinality at most d(X)t(X), and some facts about cardinal invariants of compact spaces.

متن کامل

Cardinal invariants of universals

We examine when a space X has a zero set universal parametrised by a metrisable space of minimal weight and show that this depends on the σ-weight of X when X is perfectly normal. We also show that if Y parametrises a zero set universal for X then hL(X) ≤ hd(Y ) for all n ∈ N. We construct zero set universals that have nice properties (such as separability or ccc) in the case where the space ha...

متن کامل

On Topological and Linear Homeomorphisms of Certain Function Spaces

Let X be a countable metric space which is not locally compact. We prove that the function space C,,(X) is homeomorphic to rr,, We also give examples of countable metric spaces X and Y which are not locally compact and such that C,,(X) and C,,(Y) are not linearly homeomorphic.

متن کامل

Isolating Cardinal Invariants

There is an optimal way of increasing certain cardinal invariants of the

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology and its Applications

سال: 1997

ISSN: 0166-8641

DOI: 10.1016/s0166-8641(96)00165-4